20 CHUYÊN ĐỀ BỒI DƯỠNG HSG TOÁN 8 GIA SƯ ĐÔNG KHAI TRÍ 0936.628.456
CHUYÊN ĐỀ 1 - PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
A. MỤC TIÊU:
* Hệ thống lại các dạng toán và các phương pháp phân tích đa thức thành nhân tử
* Giải một số bài tập về phân tích đa thức thành nhân tử
* Nâng cao trình độ và kỹ năng về phân tích đa thức thành nhân tử
B. CÁC PHƯƠNG PHÁP VÀ BÀI TẬP
I. TÁCH MỘT HẠNG TỬ THÀNH NHIỀU HẠNG TỬ:
Định lí bổ sung:
+ Đa thức f(x) có nghiệm hữu tỉ thì có dạng p/q trong đó p là ước của hệ số tự do, q là
ước dương của hệ số cao nhất
+ Nếu f(x) có tổng các hệ số bằng 0 thì f(x) có một nhân tử là x – 1
+ Nếu f(x) có tổng các hệ số của các hạng tử bậc chẵn bằng tổng các hệ số của các hạng
tử bậc lẻ thì f(x) có một nhân tử là x + 1
+ Nếu a là nghiệm nguyên của f(x) và f(1); f(- 1) khác 0 thì
f(1)
a - 1
và
f(-1)
a + 1
đều là số
nguyên. Để nhanh chóng loại trừ nghiệm là ước của hệ số tự do
1. Ví dụ 1: 3x
2
– 8x + 4
Cách 1: Tách hạng tử thứ 2
3x
2
– 8x + 4 = 3x
2
– 6x – 2x + 4 = 3x(x – 2) – 2(x – 2) = (x – 2)(3x – 2)
Cách 2: Tách hạng tử thứ nhất:
3x
2
– 8x + 4 = (4x
2
– 8x + 4) - x
2
= (2x – 2)
2
– x
2
= (2x – 2 + x)(2x – 2 – x)
= (x – 2)(3x – 2)
Ví dụ 2: x
3
– x
2
- 4
Ta nhân thấy nghiệm của f(x) nếu có thì x =
1;
2;
4
, chỉ có f(2) = 0 nên x = 2 là
nghiệm của f(x) nên f(x) có một nhân tử là x – 2. Do đó ta tách f(x) thành các nhóm có
xuất hiện một nhân tử là x – 2
Cách 1:
x
3
– x
2
– 4 =
3
2
2
2
2
2
2
4
2
(
2)
2(
2)
x
x
x
x
x
x
x
x x
x
=
2
2
2
x
x
x
Cách 2:
3
2
3
2
3
2
2
4
8
4
8
4
(
2)(
2
4)
(
2)(
2)
x
x
x
x
x
x
x
x
x
x
x
=
2
2
2
2
4
(
2)
(
2)(
2)
x
x
x
x
x
x
x
1
Để tải trọn bộ chỉ với 50k, vui lòng liên hệ qua Zalo 0898666919 hoặc Fb: Hương Trần